Isolation and characterization of gomesin, an 18-residue cysteine-rich defense peptide from the spider Acanthoscurria gomesiana hemocytes with sequence similarities to horseshoe crab antimicrobial peptides of the tachyplesin family.

نویسندگان

  • P I Silva
  • S Daffre
  • P Bulet
چکیده

We have purified a small size antimicrobial peptide, named gomesin, from the hemocytes of the unchallenged tarantula spider Acanthoscurria gomesiana. Gomesin has a molecular mass of 2270.4 Da, with 18 amino acids, including a pyroglutamic acid as the N terminus, a C-terminal arginine alpha-amide, and four cysteine residues forming two disulfide bridges. This peptide shows marked sequence similarities to antimicrobial peptides from other arthropods such as tachyplesin and polyphemusin from horseshoe crabs and androctonin from scorpions. Interestingly, it also shows sequence similarities to protegrins, antimicrobial peptides from porcine leukocytes. Gomesin strongly affects bacterial growth, as well as the development of filamentous fungi and yeast. In addition, we showed that gomesin affects the viability of the parasite Leishmania amazonensis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tachyplesin, a class of antimicrobial peptide from the hemocytes of the horseshoe crab (Tachypleus tridentatus). Isolation and chemical structure.

A cationic peptide, designated tachyplesin, was isolated from acid extracts of horseshoe crab (Tachypleus tridentatus) hemocyte debris. It consists of 17 residues and the structure determined by Edman degradation is: (formula; see text) The carboxyl-terminal end of this peptide was identified as arginine alpha-amide, and the whole sequence including the alpha-amide was also confirmed by fast at...

متن کامل

Comparison of Antimicrobial Properties and Toxicity of Natural S3 Peptide with Horseshoe Crab Amoebocyte Origin and its Mutants

Introduction: Antimicrobial peptides (AMPs) are compounds with antimicrobial properties that are studied widely due to the development of resistance of pathogenic bacteria to antibiotics. In the present study, the toxicity and antimicrobial effects of two natural monomeric peptides (S3 and S∆3) were compared with S3-S∆3 hybrids and S3 tetramers. Material & Methods: Protein hybrids (S∆3S3-2mer-G...

متن کامل

The lipopolysaccharide-activated innate immune response network of the horseshoe crab

Primary stimulation of the horseshoe crab innate immune system by bacterial lipopolysaccharide (LPS) activates a network of responses to ensure host defense against invading pathogens. Granular hemocytes selectively respond to LPS via a G protein-dependent exocytic pathway that critically depends on the proteolytic activity of the LPS-responsive coagulation factor C. In response to stimulation ...

متن کامل

Evaluation of the Effect of Less Negatively Charged Amino Acid Substitution in Synthetic Tetramer Peptide S3 Derived from Horseshoe Crab Ambocyte on its Antibacterial Properties

Introduction: The study of the effects of synthetic peptides with antibacterial properties can provide more effective antibiotics. This study designed, expressed, and investigated the Sushi 3 tetramer peptide. Subsequently, it was compared in terms of changing antibacterial properties with another Sushi3 tetramer peptide the aspartic acid and proline amino acids of which were replaced with glyc...

متن کامل

Functional conversion of hemocyanin to phenoloxidase by horseshoe crab antimicrobial peptides.

Arthropod hemocyanins and phenoloxidases serve different physiological functions as oxygen transporters and enzymes involved in defense reactions, respectively. However, they are equipped with a structurally similar oxygen-binding center. We have shown that the clotting enzyme of the horseshoe crab, Tachypleus tridentatus, functionally converts hemocyanin to phenoloxidase by forming a complex w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 275 43  شماره 

صفحات  -

تاریخ انتشار 2000